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The weighted uniform convergence of the Bala� zs�Shepard operator is considered
on the real line. As a consequence of the main result, it is proved that for a wide class
of weights, rational functions are always dense in the space of continuous functions,
in contrast to the polynomials where the Akhiezer�Babenko condition is necessary for
such density. � 1997 Academic Press

In [1] the convergence of the so-called Bala� zs�Shepard operators

Sn( f, x) :=
�n

k=&n f (xk)(x&xk)&2

�n
k= &n (x&xk)&2 (1)

was considered on R. Here

xk :=
*nk

n
(k=0, \1, ..., \n) (2)

are equidistant nodes where *n>0 is a real number depending on n. In the
case where f (x) has equal finite limits at \� the error estimates obtained
in [1] were quite satisfactory, but when f (x) is unbounded at \� we
could not get results for the original operator, only for some modification.
The purpose of this paper is to settle the problem of weighted approxima-
tion by the Bala� zs�Shepard operators.

To do so we must define our weight function w(x)=e&Q(x) by the
following properties: There exists an a�0 such that

(i) Q(x) is even, limx � � Q(x)=�;
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(ii) Q$(x)�0 is either strictly monotone increasing or bounded in
[a, �); and

(iii) in the case where Q$(x) is strictly monotone increasing in [a, �),
Q$(x+1)�AQ$(x) (x # [a, �), A>0 independent of x).

These conditions are almost the same as those in Ditzian�Totik [2,
p. 181], except that we allow Q$(x) to be bounded and (ii) and (iii) are
required only for sufficiently large x, thus considering a wider class of
weights. For example, weights like

Q(x)=log;(1+|x| ), Q(x)=|x|; (;>0), Q(x)=ec |x| (c>0)

are included, but Q(x)=ex2
is excluded by (iii).

In connection with these weights, for each t # [a, �) we define t* as

(a) the unique solution of tQ$(t*)=1 if Q$(x) A � as x A �, and

(b) � if Q$(x) is bounded as x � �.

Again, (a) is taken from [2, p. 181]. After these preliminaries, the
modulus of continuity is defined as (compare [2, 11.2.6])

0( f, t)w := sup
0<h�t

&w(x)( f (x+h�2)& f (x&h�2))&L�[&h*, h*] (3)

for any f # C(R) satisfying

lim
|x| � �

w(x) f (x)=0. (4)

In order to formulate our result, we need another characteristic of the
function f (x) which measures the rate of convergence in (4) (cf. also [1]):

=( f, y) := sup
|x|�y

w(x) | f (x)| ( y�0). (5)

This is a monotone decreasing function of y, and for functions satisfying
(4) evidently

lim
y � �

=( f, y)=0. (6)

Theorem. For any f (x) satisfying (4) we have

&w(x)( f (x)&Sn( f, x))&R

=O \0 \f,
*n log n

n +w
+=( f, +n)+

w(*n)
w(+n)

+
*2

n

nw(*n)+ (7)

for any *n>+n>0.
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Before proving this statement, we formulate an important

Corollary. For any f (x) satisfying (4), there exist *n>+n>0 such that

lim
n � �

&w(x)( f (x)&Sn( f, x))&R=0. (8)

Proof of the Corollary. Let *n be such that

w(*n)=
*2

n

n1�2 .

(This is, by no means, an optimal choice of *n , but it suffices to prove the
corollary. As for the optimal choice, it depends on the structural properties
of the function; see the examples at the end of the paper.) It follows
from (i) above that such a *n (uniquely) exists; in fact *n # (0, n1�4) and
limn � � *n=�. Now choose +n such that Q(+n)= 1

2Q(*n); evidently
limn � � +n=�. With this choice of *n , +n the right-hand side of (7) takes
the form

O \0 \f,
log n
n3�4 +w

+=( f, +n)+w(*n)1�2+
1

n1�2+
which tends to 0 as n � � if we take into account the relation (9) of the
lemma to be proved below.

In order to prove our theorem we need some basic properties of the
modulus of continuity defined above. These properties are not mentioned
in Ditzian�Totik [2] (moreover, the class of weight functions considered
here are more general); therefore for completeness we provide a proof.

Lemma. For any f (x) satisfying (4) we have

lim
t=0+

0( f, t)w=0 (9)

and

0( f, *t)w�c(w)(*+1) 0( f, t)w (*t�2), (10)

where c(w)>0 depends only on w.

Proof. We have

w(x) | f (x+h�2)& f (x&h�2)|

�|w(x+h�2) f (x+h�2)&w(x&h�2) f (x&h�2)|

+| f (x+h�2)| [w(x)&w(x+h�2)]+| f (x&h�2)| [w(x&h�2)&w(x)].

3BALA� ZS�SHEPARD OPERATORS
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Evidently, we may assume that here a�|x|�h*. By the mean value
theorem we get for the above quantity

=o(1)+w(x+h�2) | f (x+h�2)| [eQ(x+h�2)&Q(x)&1]

+w(x&h�2) | f (x&h�2)| [eQ(x)&Q(x&h�2)&1]

=o(1)+w(x+h�2) | f (x+h�2)| [ehQ$(!)�2&1]

+w(x&h�2) | f (x&h�2)| [ehQ$(')�2&1]

(x&h�2<'<x<!<x+h�2), (11)

where o(1) refers to h � 0. Here in the case where Q$ is bounded the right-
hand side goes to 0 as h � 0. Otherwise we have by (iii) and (a) above for
0<h<2 and a�|x|�h*

hQ$(')�hQ$(!)�hQ$(x+h�2)�hQ$(x+1)

�AhQ$(x)�AhQ$(h*)=eA.

Thus given an arbitrary =>0, for |x|�x1(=), w(x\h�2) | f (x\h�2)|<=,
while for |x|<x1(=)

ehQ$(')�2&1�ehQ$(!)�2&1�eO(h)&1<= if h�h0(=)

and thus in both cases the right-hand side of (11) goes to 0 as h � 0.
In order to prove (10), first we note that it is sufficient to prove it for

*�A, since if *<A, then by the monotonicity of 0 we get

0( f, *t)w<0( f, At)w�c1(w)(A+1) 0( f, t)w

�c1(w)(A+1)(*+1) 0( f, t)w

which proves (10) with c(w)=c1(w)(A+1). Thus let *>A, and evidently,
we may assume that * is an integer. We obtain from (3) with the substitu-
tion h=*H

0( f, *t)w= sup
0<H�t

&w(x)( f (x+*H�2)& f (x&*H�2))&L�[&(*H)*, (*H)*]

� sup
0<H�t

:
*&1

j=1&*

&w(x+ jH�2)[ f (x+( j+1) H�2)

& f (x+( j&1) H�2)]&L�[&(*H)*, (*H)*]

} " w(x)
w(x+ jH�2)"L�[&(*H)*, (*H)*]

. (12)
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In Case (a) we have by *H�*t�x0 and (iii)

Q$((*H)*+*H�2)�AQ$((*H)*)=
A

*H
�

1
H

=Q$(H*),

whence by the monotonicity of Q$ we obtain

|x+ jH�2|�|x|+*H�2�(*H)*+*H�2�H* ( |x|�(*H)*, j=&*, ..., *).

Thus we obtain from (12) (extending the estimates trivially for |x|�a)

0( f, *t)w= sup
0<H�t

:
*&1

j=1&*

&w(x)[ f (x+H�2)& f (x&H�2)]&L�[&H*, H*]

} " w(x)
w(x+ jH�2)"L�[&(*H)*, (*H)*]

�0( f, t)w (2*&1) " w(x)
w( |x|+*H�2)"L�[&(*H)*, (*H)*]

, (13)

and these steps are correct also in Case (b), since then the norms are to be
taken over the entire real line. Here the last norm is evidently bounded for
|x|�x0 ; otherwise

w(x)
w(x+*H�2)

=eQ( |x| +*H�2)&Q(x)=e*HQ$(!)�2 (a�|x|<!<|x|+*H�2),

again by the mean value theorem. Here in Case (a) we get

e*HQ$(!)�e*HQ$( |x|+*H�2)�eA*HQ$( |x| )�eA*HQ$((*H)*)=eA

(a�|x|�(*H)*),

while in Case (b) e*HQ$(!)�e&Q$&L�(&�, �). These estimates together with (13)
completely prove (10).

Proof of the Theorem. By symmetry, it is sufficient to prove for x�0.
We distinguish two cases.

Case 1. 0�x�*n . Let

|x&xj | := min
|k|�n

|x&xk |�
*n

2n

5BALA� ZS�SHEPARD OPERATORS
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and

Kn(x) :={k : k # N, |k|�n, |x&xk |�min \ 2
Q$( |x+xk |�2)

, 1+= .

First we estimate the quantities

Bk :=
w(x)

w( |x+xk |�2)
(k # Kn(x)).

If x�a+ 1
2 then B is evidently bounded. Now if x>a+ 1

2 and xk�x then
Bk�1. Thus we may assume that a+ 1

2<x<xk , whence by the mean value
theorem

Bk=eQ( |x+xk |�2)&Q(x)=e((xk&x)�2) Q$(!) \! # \x,
|x+xk |

2 ++ .

In Case (b), this is bounded by e(1�2) &Q$&L�(&�, �). In Case (a), by the
monotonicity of Q$ we get

Bk�e((xk&x)�2) Q$((x+xk)�2)�e.

Hence Bk�B in all cases considered.
Now if k # Kn(x) then evidently |x+xk |�2�(|x&xk |�2)*, and thus by

the definition of the modulus of continuity in (3) and (10) we get, using the
previous estimate,

w(x)
�n

k=&n (x&xk)&2 :
k # Kn(x)

| f (x)& f (xk)|
(x&xk)2

� max
k # Kn(x)

w(x)
w( |x+xk |�2)

(x&xj)
2 :

|k|�n

0( |x&xk | )w

(x&xk)2

�B(x&xj)
2 0 \*n log n

n +w _
n

*n log n
:

|k|�n

1
|x&xk |

+ :
|k|�n

1
(x&xk)2&

�
*2

n

n2 0 \*n log n
n +w

O _ n
*n log n

}
n log n

*n
+

n2

*2
n&

=O \0 \*n log n
n +w+ .
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On the other hand, we obtain

w(x)
�n

k= &n (x&xk)&2 :
min(1, 2�Q$( |x+xk |�2))<|x&xk |

| f (x)& f (xk)|
(x&xk)2

�
w(x) *2

n

2n2w(*n)
:

|k|�n

Q$ \ |x+xk |
2 +

2

.

Here, if Q$ is bounded, we get the last term on the right-hand side of (7).
Otherwise, by (a)

w(x) Q$ \ |x+xk | 2

2 +�e2 log Q$(x+1)&Q(x)�e2 log(AxQ$(1))&�x
x�2 Q$(t) dt

=O(e2x log A&(x�2) Q$(x�2))=O(1),

whence again we get the same estimate.
Collecting all of these estimates we get

w(x) | f (x)&Sn( f, x)|=O \0 \*n log n
n +w

+
*2

n

nw(*n)+ ( |x|�*n).

Case 2. x>*n . Then

w(x) | f (x)&Sn( f, x)|

�
� |k|�n w(x)[ | f (x)|+| f (xk)|]�(x&xk)2

� |k|�n (x&xk)&2

�=( f, *n)+w(*n) _\
� |k|�n+n�*n

O(w(xk)&1)�(x&xk)2

+�n+n �*n<|k|�n =( f, +n)�(w(*n)(x&xk)2)+
� |k|�n (x&xk)&2 &

�=( f, *n)+O \w(*n)
w(+n)

+=( f, +n)+
=O \w(*n)

w(+n)
+=( f, +n)+ ( |x|>*n).

Hence the proof of the theorem is complete.

Examples. Let us consider the special weights listed at the beginning.
In all these cases we assume, for simplicity, that

0( f, t)w=O(t:) (0<:<1).
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Now if Q(x)=log;(1+|x| ) (;>0) then for the function class | f (x)|=
O( |x| #) ( |x| � �, 0<#<;) and with the choice

*n=(n1&: log: n)1�(2+;&:), +n=*;�(2;&#)
n

the right-hand side of (7) takes the form

O \\log2+; n
n1+; +

:�(2+;&:)

+(n1&: log: n) &;(;&#)�((2;&#)(2+;&#))+ .

Next, if Q(x)=|x|; (;>0), then for the class of functions | f (x)|=
O(ec |x| ;

) (0<c<1), with *n=log1�; n, +n=*n�(2&c)1�; we obtain the
error estimate

O \\log1�; n
n +

:

+ .

Finally, if Q(x)=e |x|, then for | f (x)|=O(ece |x|
) (0<c<1) with the

choice *n=(log log n)1�;, +n=(*;
n&log(2&c))1�; we get

O \\log n(log log n)1�;

n +
:

+ .

Finally, we mention that our corollary above can be interpreted such
that the rational functions are always dense in the space of continuous
functions with respect to the weights e&Q(x) considered in our theorem.
This is in sharp contrast with the polynomial approximation where the
density condition is

|
�

&�

Q(x)
1+x2 dx=�.

As we have seen, no such condition is necessary for rational functions, for
a wide class of weights.
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